Статьи и обзоры nachodki.ru

Использование поляризованного света

При способе освещения, рассмотреном в статье "Темнопольная микроскопия",  применяется обыкновенный свет, в котором колебания совершаются во всех направлениях в плоскости, перпендикулярной направлению распространения света (рис.1,а).

 

 shem-pol  shem--pol
 а б 

 Рисунок 1. Направление колебаний частиц обыкновенного света (а), поляризованного света (б) [1].

   Соответственно этому обыкновенный свет применяется в металлографии для исследования изотропных объектов, или же в тех случаях (а их большинство), в которых данные об анизотропии не важны или не являются целью. Оптические свойства анизотропных микрообъектов различны в различных направлениях и проявляются по-разному в зависимости от ориентации этих объектов относительно направления наблюдения и плоскости поляризации света, падающего на них, поэтому при их исследовании применяется поляризованный свет, обладающий свойством анизотропии.

  В поляризованном свете имеют место колебания только в одном определенном направлении в плоскости, перпендикулярной направлению распространения света (рис.1, б). Визуально различить обыкновенный и поляризованный свет невозможно. Получение и анализ поляризованного света основан исключительно на его взаимодействии с веществом. Непременным условием при этом является анизотропия самого вещества.  В микроскопии для получения и анализа поляризованного света используются две призмы Николя (общепринятый термин – просто «николи»). Николи изготавливаются из прозрачных кристаллов исландского шпата, обладающего свойством двойного лучепреломления. Поэтому николь пропускает колебания только одного направления. Схема получения поляризованного света представлена на рис. 2. Поскольку обыкновенный свет содержит колебания различных направлений, то первый николь всегда пропустит какую-то часть из них, в соответствии с направлением своей оптической оси. Если ориентация оптических осей николя 2 и николя 1 совпадают (николи параллельны, рис. 2,,а), то николь 2 пропустит свет. Если ориентации оптических осей николей взаимно перпендикулярны (николи скрещены, рис. 2,б), то поверхность образца при этом будет восприниматься темной; николь 2 только пропускает эллиптически поляризованный свет. Подробно этот вопрос рассмотрен в [1].

 nicoli

 Рисунок 2. Схема хода лучей при параллельных и скрещенных николях [1].

Николь 1 называется поляризатором, николь 2 - анализатором.
Метод наблюдения в поляризованном свете (поляризационная микроскопия) служит как для микроскопических исследований минералов, биологических объектов, так и для анализа структуры металлов и неметаллических материалов.
Традиционно в металлографии поляризованный свет применяют для изучения неметаллических включений [1]. Поскольку определенная часть неметаллических включений оптически прозрачна, исследование основано на различии оптических свойств включения в различных направлениях, т.е. их оптической анизотропии [2]. Оптическая анизотропия проявляется при прохождении света внутри включения и при отражении света от его поверхности. Плоская поверхность и прозрачное включение по-разному взаимодействуют со световым потоком. Плоско поляризованный свет, отраженный от плоской поверхности, задерживается анализатором и поверхность выглядит темной. Часть света преломляется на внешней поверхности включения, проходит внутрь, отражается на поверхности включение-металл и выходит наружу, вновь испытывая преломление на внутренней поверхности [2]. В результате свет перестает быть поляризованным. Поэтому при скрещенном положении анализатора и поляризатора видно светлое изображение включения на темном фоне. Цвет включения может изменяться в результате интерференции, что связано с анизотропными эффектами при отражении поляризованного света.
Используя поляризованный свет можно сделать выводы о форме прозрачных включений. Если включение имеет правильную круглую форму, то на его светлопольном (рис.3,а) и темнопольном изображениях появляются концентрические кольца, связанные с интерференцией лучей, отраженных от внутренней поверхности включения. В поляризованном свете при скрещенных николях наблюдается эффект темного креста (рис. 3,б). Контраст концентрических колец и темного креста зависит от совершенства формы включения.

Включения силикатов стали; светлое поле Включения силикатов в стали; поляризованный свет
 а б 

Рисунок 3. Шаровидные остеклованные включения металлургического шлака в светлом поле (а) и поляризованном свете (б).

Включение в силумине; светлое поле Включение в силумине; темное поле
 а  б
Включение в силумине; поляриз.свет; николи параллельны Включение в силумине; поляриз.свет;николи скрещены
 в г 

 Рисунок 4. Круглое включение шлака в силумине: а – светлое поле, б – темное поле, в,г – поляризованный свет ( в –николи параллельны, г- николи скрещены)

Если включение не прозрачно, то концентрические кольца на светлопольном и темнопольном изображениях не проявляются. В поляризованном свете (рис.4,в-г) эффект темного креста отсутствует.

Специфические эффекты, возникающие в поляризованном свете, рассмотрены также в статье «Оптические эффекты». Это, в первую очередь, ямки травления и световые фигуры на дефектах поверхности.
Здесь остановимся на том, что можно получить в поляризованном свете для достаточно обычных в металловедении объектов. На рис.5 показано сравнение фотографий структуры серого чугуна, полученных различными методами контрастирования. Для данного материала наиболее информативно светлое поле, видно максимальное количество деталей изображения. В темном поле «светятся» все неплоскостные детали структуры – цементит и фосфид железа. Плоскости – феррит и матрица фосфидной эвтектики – темные. Включение графита – серое, немного видны его границы. Можно сказать, что в темном поле данное изображение, в основном, черно-белое. В поляризованном свете картина меняется. Цементит перлита «светится». При этом каждая колония имеет свой цветовой оттенок, в зависимости от ориентации. Цементит в составе фосфидной эвтектики должен был бы тоже «светиться», но при данном масштабе изображения этого не видно. Соединение Fe3P светится. Поскольку феррит имеет кубическую объемно-центрированную кристаллическую решетку, он не изменяет плоскость поляризации, поэтому в поляризованном свете феррит – темный.

структура серого чугуна, светлопольное освещение   структура серого чугуна, темнопольное освещение
                                      а                                           б 
 структура серого чугуна в поляризованном свете  
                                          в  

Рисунок 5. Структура серого чугуна: а – светлое поле, б – темное поле, в – поляризованный свет.

На рис.6 показана структура чугуна, легированного ниобием. Фазовый состав – карбиды и аустенит. В поляризованном свете карбидная фаза окрашена в оттенки синего. Темная составляющая – аустенит в составе эвтектики.

структура ниобиевого чугуна, светлопольное освещение  структура ниобиевого чугуна в поляризованном свете 
                                          а                                               б 

Рисунок 6. Структура чугуна: а – светлое поле, б – поляризованный свет

1. А.Н.Червяков, С.А. Киселева, А.Г. Рыльникова. Металлографическое определение включений в стали. М.: Металлургия, 1962.

2. Е.В.Панченко и др. Лаборатория металлографии. М.: Металлургия, 1965.

Вверх